Login
Create new posts
点击这些标签(学名叫做「实体」),就可以到相应的页面。登陆的用户即可编辑!
Duality theorems for the Galois cohomology of commutative group schemes.
但实际上并感受不出什么变化。特别是 Ivy Renderer 还没有被启用。
为什么 Angular 的编译持续报告 The pipe 'async' could not be found? ERROR in : Template parse errors: he pipe 'async' could not be found ("
We should conquer the frameworks, instead of being slaves of the frameworks, whether it is Angular, React, or something. We should develop our core with only features available in the JavaScript/TypeScript language. For example, instead of directly using dependency injection, we should manually write a factory function. If we want to integrate the DI of, say, Angular, we can wrap around it a layer of injectable classes. But keep in mind that the core must not use the functionalities available only in the framework. This will ease your pain when upgrading frameworks, sharing code between projects on the same subject but using different frameworks (e.g. the web version of this website is built with Angular, while the app is built with React Native).
Yeah I'm talking about react-native-web, not react-native. <TouchableOpacity /> works flawlessly with the original react-native I guess, but when I use it with react-native-web, the defect described in the title comes into play. I don't know how to deal with it. Probably I have to dive into the source code to actually get to know about it. JavaScript libraries are always like this - mysterious, and requires an enormous amount of effort to work with.
我们需要看合订本,是吗? https://colliot.org/zh/2018/01/%e7%94%a8-angular-%e5%bc%84%e4%ba%86%e4%b8%80%e4%b8%aa%e8%83%8c%e5%8d%95%e8%af%8d%e7%9a%84%e7%bd%91%e7%ab%99-eliseos-org/ 虎哥名人名言: 整个弄下来的感想就是,Angular 是真的好用,Angular 生态是真的不错,universal 完全按官方走一遍就活了,现在线上运行的版本就是 universal 的,右键查看源码可以看到是渲染好的页面发过来的。angular cli 一路可以 generate 到底,基于 NgModule 的路由懒加载也是开箱即用,不需要任何配置,非常美妙。
这个网站现在还是 Angular 的吗?
给定标准布朗运动 Bt 假设 s 是个停时,那么 B′t={Bt2Bs−Btif t≤sif t>s 是标准布朗运动。
弱反射原理 mathbb{P}{M_t ge a} = 2mathbb{P}{B_t ge a},其中 M_t = sup_{sin[0,t]}B_s 是布朗运动 B_t 在 [0,t] 内达到的最大值。 它可以写作mathbb{P}{B_t ge a}=dfrac{1}{2}mathbb{P}{M_t ge a},这个在直观上很容易理解,因为 B_t ge a 必然有 M_t ge a,而 M_t 第一次到达 a 之后,后续任何点大于或小于 a 的概率都是 1/2。 强反射原理 给定标准布朗运动 B_t,假设 s 是个停时,那么
begin{equation} B'_t= begin{cases} B_t & text{if } t le s 2B_s-B_t & text{if } t > s end{cases} end{equation}
仍是标准布朗运动。 这实际上就是「第一次到达 a 之后,后续任何点大于或小于 a 的概率都是 1/2」的严格表述。所以后者可以推出前者。
感觉跟 Brownian motion 或者说 Wiener process 的 reflection principle 有关?
找到了相关文章 Formalising Real Numbers in Homotopy Type Theory,让我来看一看。
怎么用类型系统表述戴德金分割呢?
textbf{} extbf{}
我现在懂了,就是戴德金分割
不成立。现在的语法也有这样的歧义
Create new posts