Login
Create new posts
Weinberg III讨论的refinement
CFT中的类似物,待补充
在电脑端,链接的字号和一般文字的字号不相等
Path integral as formal measure 另一方面,很多情况下上述意义的QFT有path integral的描述。roughly, path integral是通常意义的(积分)测度的推广,由于被积的空间一般具有更丰富的结构,例如mapping space,这个测度携带了base manifold 信息。 通常我们说,无穷维的函数空间上不存在(Lebesgue)意义下的平移不变测度。在axiomatic QFT中,目前只在低维具体证明了一些non-Gaussian measure/非自由场论的存在性。而最近几年,4d,phi^4理论被证明连续极限只能是自由场论,换句话说,phi^4微扰场论只能作为EFT存在。 为什么收敛性通常(不)是一个问题 因为遇到的收敛性问题一般最终归约到了到mathbb{R}的赋值,而之所以需要在mathbb{R}上赋值,是因为现实世界在我们了解的尺度内很好的被mathbb{R}上的数学/物理所描述。而EFT中的微扰计算,一般来说只关心到mathbb{R}[[h]]的赋值,即计算结果是h的形式幂级数。 另一个例子是关于Grassmann数的Berezin积分,目前为止这种积分还未能被理解成通常意义的测度,我们实际需要的是它bookkeeping了超空间的信息,以及int dth th 读出一个实数。尽管任意一个supermanifold都(non-canonically)同胚于一个exterior bundle。 最后一个例子是在进行正规化的时候,我们一般在tempered distribution空间上进行计算,这上面的积分也已经失去了测度的直观意义。最简单的例子是frac{1}{x^2}作为分布满足, [int_{mathbb{R}}dx,frac{1}{x^2}=0] 我们实际需要的是分布在Fourier变换下的良好行为。 某种角度下,收敛性不是一个问题和Laziness以及计算中的结构相关。 我们用mathematica的例子来进行简单说明,一个函数是一个(tree) graph,下面的图片来自《Mathematica 编程:高级导论》,表达了函数z sin(x+y)的粗粒化的结构, 在进行表达式的符号计算时,程序会应用sin满足的等式,在进行数值计算时,程序会应用数值计算的算法,而这些细节被封装到了相应的包中。在这种意义上,图片中的sin是一种局部粗粒化的表达方式。 抽象approx粗粒化approxQuotientapprox封装approx cdots 在符号计算的时候,如果我们只应用了sin的全部规则中的一个子集P,如果将sin替换成满足P的其它任意的不等于sin的函数text{nonsin},那么这段形式推导依然是符合逻辑的。差别只在进行具体的赋值时体现。其它更熟知的例子可见p-adic Gamma函数,q-deformed quantities。 让我们总结一下,收敛性问题一般归约到mathbb{R}上的(线性)空间的拓扑,但很多计算中出现的结构不涉及收敛性作为抽象的对象独立存在,尽管它们和我们所知的尺度内的现实空间没有联系。
Gaussian分布/平均场论/GFT 实际上这一节和Halverson的报告有关,前面的都是引言。 不同的领域中可能会用不同的词语标记下面的概念, 2-pt function/2-moment/Propagator/Green function/Kernel function/... 一个generalized free theory(GFT)被2-pt函数G(x,x^prime)所完全刻画,其它关联函数是2-pt函数的Wick contraction。 未完待续。
%Abbreviations of Greek letters ef a {alpha} ef b {beta} ef g {gamma} ef G {Gamma} ef d {delta} ef D {Delta} ef e {epsilon} ef ve {varepsilon} ef m {mu} ef n {nu} ef k {kappa} ef l {lambda} ef L {Lambda} ef s {sigma} ef S {Sigma} ef r {rho} ef o {omega} ef O {Omega} ef th {theta} ef Th {Theta} ef t {tau} ef z {zeta} %Abbreviations of mathbb fonts ewcommand{R}{mathbb{R}} ewcommand{N}{mathbb{N}} ewcommand{Z}{mathbb{Z}} ewcommand{C}{mathbb{C}} ewcommand{V}{mathbb{V}} %%vector spaces ewcommand{W}{mathbb{W}} %%vector spaces %Abbreviations of Lie algebras ewcommand{glie}{mathfrak{g}} %%generic Lie algebra ewcommand{gllie}{mathfrak{gl}} %%general linear ewcommand{sllie}{mathfrak{sl}} %%special linear ewcommand{solie}{mathfrak{so}} %%special orthogonal ewcommand{splie}{mathfrak{sp}} %%symplectic ewcommand{nlie}{mathfrak{n}} %%nilpotent or solvable algebra ewcommand{plie}{mathfrak{p}} %%nilpotent or solvable algebra ewcommand{hlie}{mathfrak{h}} %%abelian factor ewcommand{klie}{mathfrak{k}} %%maximal compact subalgebra ewcommand{blie}{mathfrak{b}} %%Borel subalgebra %Others ewcommand{greenfunction}[1]{langle #1rangle} %%green functions enewcommand{vev}[1]{langle #1rangle} %%green functions enewcommand{H}{mathcal{H}} %%Hilbert spaces ewcommand{p}{partial} %%partial derivatives ewcommand{nn}{nonumber} ewcommand{Ccat}{mathcal{C}} %%categories ewcommand{Acat}{mathcal{A}} %%categories ewcommand{Bcat}{mathcal{B}} %%categories ewcommand{Diff}{operatorname{Diff}} ewcommand{Aut}{operatorname{Aut}} enewcommand{hbar}{bar{h}} ewcommand{zbar}{bar{z}} eclareMathOperator{sign}{sign} %due to old version of MathJax ewcommand{set}[1]{{#1}}
QFT的一般意味 让我们暂时忘记物理意义下的QFT所讨论的性质,例如 locality, unitarity, positivity and causality, base manifold vs. target manifold, lattice vs. continuum, global symmetry and gauge structure, 等等。 一个QFT是描述某类激发之间的相互关系的理论。QFT的无穷小形变是相互关系的无穷小形变。QFT之间的(精确)对偶是“大”的形变,以至于可以用不同的变量(标签)标记相同的激发,它蕴含了(moduli) space of QFTs的整体结构的信息。 激发所构成的空间称为state space,隶属于运动学;相互关系为动力学。激发可以是粒子,也可以是其它local operators, defects and other nonlocal objects, fractons, etc. 相互关系可以是相互作用项,散射振幅,OPE代数,等等。
这里试图理解Halverson关于神经网络和QFT的联系的工作,他昨天在这里给了一个报告,视频还未上传,之前在别处的报告已经上传到了ytb。 以下行文风格不正规,涉及不成熟的个人观点,涉及意义不明确的比喻。 比喻 首先我们需要区分以下关于对象/事物的概念, 抽象或者具体的对象,不依赖于人类 特定人类群体对于该对象的认识 “我”对于该对象的认识,即具体的神经细胞之间的连接和上面传导的相应的信号 在第三个意义下,假设可以对不同的对象进行PCA,两个对象之间可以进行比喻在这里定义为两者的某些特征向量有显著的overlapping,换句话说,两者分享了一些相似的特征。
1111111111
11111111111
噗 deleted 是什么操作
如何估计积分 A(a)int_{(0,1)}f(x)x^a] atoinfty的行为。 把f(x)看成测试函数,x^a当atoinfty的时候只在1点不为0,因此可以用A(a)将其归一化为delta function,只要f(x)充分光滑,这个积分结果就是sim f(1) 如何估计 A(a)int K(a,x) f(x)] ato infty的行为。延续上面的思路,找K(a,x)关于x的极大值即可。 这个出现在弦散射振幅取a'to0极限,以及一些散射振幅计算中。
Create new posts